College Algebra Math 1050
 October 2018
 Sample Midterm Exam

Name: \qquad
School: \qquad Instructor: \qquad
Scientific (not graphing) calculators are allowed. The point value of each problem is written next to the problem. You must show your work to receive any credit, except on problems $1-21$. Work neatly.

Fill in the blank or circle the correct answer.

1. (4 points) Write the difference quotient $D Q=\frac{f(x+h)-f(x)}{h}$ for the function $f(x)=\sqrt{x-1}$. Do not simplify.
2. (2 points) The solution of the inequality $|x| \leq 3$ in interval notation is \qquad .
3. (3 points) The rational expression $\frac{x+3}{x^{2}-5 x+6}$ has critical numbers at $x=-3, \quad x=2$, and $x=3$. Find the solution to the inequality $\frac{x+3}{x^{2}-5 x+6}>0$. Write the solution in interval form.

Answer: \qquad
4. (4 points) A firefighter holds a hose 3 meters off the ground and directs a stream of water toward a burning building. The height of the water can be approximated by $h(x)=-0.026 x^{2}+0.576 x+3$, where $h(x)$ is the height of the water in meters at a point x meters horizontally from the firefighter in the direction of the building. What is the horizontal distance, to the nearest tenth of a meter, from the firefighter at which the maximum height of the water occurs?

Answer: \qquad
5. (4 points) Consider the inequality $|x+1|-3<2$. Which correctly describes a first step in solving the inequality?
(a) Nona's first step to solve the inequality is: $x+1-3<2$
(b) Lulu's first step to solve the inequality is: $-2<x+1-3<2$
(c) Mari's first step to solve the inequality is: $|x+1|<5$
(d) None is a correct step.

Circle all that apply.
6. (3 points) Consider the inequality $\frac{2 x-1}{x+1}<3$. Which correctly describes a first step in solving the inequality?
(a) Guga's first step to solve the inequality is: $\frac{2 x-1}{x+1}-3<0$.
(b) Nino's first step to solve the inequality is: $\frac{x-1}{1}<3$.
(c) Rezo's first step to solve the inequality is: $2 x-1<3(x+1)$.
(d) None is a correct step.

Circle all that apply.
7. (3 points) Given a zero (root) $x=-1$ of the polynomial $f(x)=x^{3}+3 x^{2}+4 x+2$, find all the remaining zeros (roots) of the polynomial $f(x)$.

Simplify completely. \qquad
8. (4 points) To simplify the difference quotient $D Q=\frac{\frac{1}{x+h}-\frac{1}{x}}{h}$ of the function $g(x)=\frac{1}{x}$, which correctly describes a first step?
(a) David's first step is: $\frac{\frac{1}{x}+\frac{1}{h}-\frac{1}{x}}{h}$
(b) Giorgi's first step is: $\frac{\frac{1}{x}+h-\frac{1}{x}}{h}$
(c) Alex's first step is: $\frac{\left(\frac{1}{x+h}-\frac{1}{x}\right)}{h} \frac{(x+h) x}{(x+h) x}$
(b) None is a correct step.

Circle all that apply.
9. (3 points) A polynomial equation with real coefficients has a zero $x=4 i+1$.

Another zero is $x=$ \qquad .
10. (4 points) Given the function
$f(x)=\frac{2 x-1}{x+1}$ with the domain $D(f)=\{x \mid x \neq-1\}$ and the function
$g(x)=\frac{x+1}{x-2}$ with the domain $D(g)=\{x \mid x \neq 2\}$,
find the domain of the function $(f \cdot g)(x)$. Answer: \qquad

For problems from 11 to 13 , consider the function $f(x)=\frac{3 x-1}{x^{2}+3 x+2}$.
11. (1 point) The domain of the function $f(x)$ is \qquad .
12. (1 point) The x-intercept(s) of $f(x)$ is/are \qquad . Write your answer(s) as ordered pair(s).
13. (1 point) The y-intercept(s) of $f(x)$ is/are \qquad . Write your answer(s) as ordered pair(s).

For problems from 14 to 15 , consider the function $g(x)=\frac{x^{2}+3 x-2}{x^{2}+2}$. Write your answer(s) in equation form.
14. (2 points) The vertical asymptote(s), if any, of the function $g(x)$ is (are) \qquad .
15. (2 points) The non-vertical asymptote(s), if any, of the function $g(x)$ is (are) \qquad .
16. (2 points) Below is a picture of the graph of a function $y=f(x)$.

Which of the following is the graph of $g(x)=f(x)-1$. Mark the correct answer(s).
(a)

(b)

(c)

(d)

17. (4 points) Given the graph of the function $y=f(x)$, let $g(x)=f(x-2)-1$.

What is $g(0)$? \qquad

18. (3 points) Given a subset of all possible rational zeros (roots) $-3,-\frac{1}{2}, \frac{3}{2}, 6$ of the polynomial $h(x)=2 x^{3}-x^{2}-13 x-6$, find a rational zero of the polynomial $h(x)$.

Answer: \qquad
19. (3 points) List all solutions to the equation $|x+4|=3$.
20. (3 points) Give the list of possible rational zeros (roots) of the polynomial equation $g(x)=3 x^{4}+7 x^{2}-2 x+35=0$. \qquad

21. (3 points) Given the table shown, evaluate $(f-g)(-1) .$| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | -7 | -5 | -3 | -1 | 3 | 5 | 7 |
| $g(x)$ | 8 | 3 | 0 | -1 | 0 | 3 | 8 |

Answer: \qquad
22. (8 points) The height of a jumper can be modeled by $h(x)=-0.046 x^{2}+0.64 x$, where h is the jumper's height in meters and x is the horizontal distance from the point of launch. Explain in 1 to 2 sentences how to find the maximum height of the jumper without relying on having to look at the graph.
${ }^{* * *}$ If this were not a sample test, students would be given more room to explain for this question. ${ }^{* * *}$
23. (9 points) Graph the rational function $f(x)=\frac{x^{2}-x-6}{x-1}$. Your graph should clearly show and label all x and y intercepts and asymptotes.
${ }^{* * *}$ If this were not a sample test, students would be given more room to show work for this question. ${ }^{* * *}$
24. (8 points) Solve the inequality $\frac{1}{x-1} \geq \frac{1}{2 x+4}$. State the solution in interval notation. ${ }^{* * *}$ If this were not a sample test, students would be given more room to show work for this question.***
25. (8 points) The graph of a function $y=f(x)$ is given below. In the subsequent (blank) coordinate plane, sketch the graph of the function $g(x)=-f(x-1)+1$. Be sure your graph shows the images of the points $A=(-1,1), \quad B=(1,-1)$, and $C=(2,7)$.

26. (8 points) Solve the inequality $|1-2 x|>5$. State the solution in interval notation.
${ }^{* * *}$ If this were not a sample test, students would be given more room to show work for this question. ${ }^{* * *}$

