Extra Examples for FINAL 2019:

1. (6 points) Consider the function $g(x)=\frac{3 x^{2}+2}{x^{2}+2 x-8}$. Write your answer(s) in equation form.
a. The vertical asymptote(s), if any, of the function $g(x)$ is (are)
b. The non-vertical asymptote(s), if any, of the function $g(x)$ is (are)
2. (3 points) Consider the system of linear equations: $\left\{\begin{array}{c}2 x+4 y-z=3 \\ -x+y-4 z=0 \\ 4 x+7 y+z=-1 \\ x+y+6 z=10\end{array}\right.$ What is a valid first step to find the solution of the given system of linear equations using matrices (row operations)?
3. (3 points) Let $f(x)=x^{4}-8$. What is the inverse f^{-1} ?
4. (2 points) Write 2 correct ways to write the intervals in interval notation marked on the number line below.

5. (2 points) The rational expression $\frac{4-x}{x^{2}-8 x+12}$ has critical numbers at $x=2, x=4$ and $x=6$. Find the solution to the inequality $\frac{4-x}{x^{2}-8 x+12} \geq 0$. Graph solution on number line.

6. (4 points) Consider the function: $f(x)=\log _{2}(x+3)$
a. What is the domain of f ?
b. What is the intercept of f ? Write your answer as an ordered pair.
7. (9 points) Graph the rational function $f(x)=\frac{x^{2}}{x-4}$. Your graphs should clearly show and label all x and y-intercept(s) and all asymptotes.

8. (2 points) Multiply: $\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]\left[\begin{array}{cc}9 & -3 \\ 6 & 1\end{array}\right]$
9. (2 points) The graph of the function $f(x)=5 x^{8}+6 x^{4}-3$ has at most \qquad turning points.
10. (3 points) If $\log _{b} x^{4}=7$, evaluate $\log _{b} x$.
11. (3 points) Write an expression to find the term containing a^{8} in the expansion $(6 a-1)^{37}$. Do not simplify.
12. (3 points) If $f(x)=\frac{3 x+5}{x-3}$ and then $f^{-1}(x)=\frac{3 x-5}{x-3}$. The range of f is \qquad

For problems 13-14, consider the function $g(x)=\frac{4 x^{2}+3}{x^{2}+2 x-15}$
13. (3 points) The vertical asymptote(s), if any, of the function $g(x)$ is (are)

Write your answer(s) as equation(s).
14. (3 points) The non-vertical asymptote(s), if any, of the function $g(x)$ is (are) \qquad .
Write your answer(s) as equation(s).

15. (3 points) Given the table: | x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | -7 | -5 | -3 | -1 | 3 | 5 | 7 |
| $g(x)$ | 8 | 3 | 0 | -1 | 0 | 3 | 8 |

Evaluate $(g \circ f)(3)$ \qquad .
16. (3 points) The maximum value of the function $f(x)=-x^{2}-3 x+7$ is: $y=$ \qquad
17. (3 points) How long will it take an initial investment of $\$ 1000$ to be worth $\$ 6500$ if the investment compounds continuously at an annual interest rate of 4% ? Round your answer to the nearest tenth of a year.
18. (4 points) The form of the partial fraction decomposition of the rational function $f(x)=\frac{4 x+1}{x(x+3)^{2}}$ is:
19. (4 points) Let $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -1 & 0 & -4 & 3 \\ 2 & 2 & 1 & -1\end{array}\right]$. Some row operation(s) have been applied to A to obtain $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -5 & -8 & \boldsymbol{x} & \boldsymbol{y} \\ 2 & 2 & 1 & -1\end{array}\right]$. What are the values of \boldsymbol{x} and \boldsymbol{y} ?
20. (4 points) Find the remainder: $\frac{5 x^{2}+7 x-3}{x+1}$
21. (7 points) Assume the following sequence is arithmetic. Find the sum using appropriate formulas.

$$
4-1-6-11-16-\cdots-126
$$

22. (5 points) Let $f(x)=\frac{3 x+5}{x-3}$. Find the inverse of f and simplify completely.
