Extra Examples for FINAL 2019:

- 1. (6 points) Consider the function $g(x) = \frac{3x^2+2}{x^2+2x-8}$. Write your answer(s) in equation form. a. The vertical asymptote(s), if any, of the function g(x) is (are)

 - b. The non-vertical asymptote(s), if any, of the function g(x) is (are)

2. (3 points) Consider the system of linear equations: $\begin{cases} 2x + 4y - z = 3\\ -x + y - 4z = 0\\ 4x + 7y + z = -1\\ x + y + 6z = 10 \end{cases}$ What is a valid first step to

find the solution of the given system of linear equations using matrices (row operations)?

3. (3 points) Let $f(x) = x^4 - 8$. What is the inverse f^{-1} ?

4. (2 points) Write 2 correct ways to write the intervals in **interval notation** marked on the number line below.

- 6. (4 points) Consider the function: $f(x) = log_2(x+3)$
 - **a.** What is the domain of *f*?

b. What is the intercept of *f* ? **Write your answer as an ordered pair.**

7. (9 points) Graph the rational function $f(x) = \frac{x^2}{x-4}$. Your graphs should clearly show and label all x and y-intercept(s) and all asymptotes.

8. (2 points) Multiply: $\begin{bmatrix} -1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 9 & -3 \\ 6 & 1 \end{bmatrix}$

- **9.** (2 points) The graph of the function $f(x) = 5x^8 + 6x^4 3$ has at most ______turning points.
- **10.** (3 points) If $log_b x^4 = 7$, evaluate $log_b x$.

11. (3 points) Write an expression to find the term containing a^8 in the expansion $(6a - 1)^{37}$. Do not simplify.

12. (3 points) If
$$f(x) = \frac{3x+5}{x-3}$$
 and then $f^{-1}(x) = \frac{3x-5}{x-3}$. The range of *f* is _____.

For problems 13-14, consider the function $g(x) = \frac{4x^2+3}{x^2+2x-15}$

- **13. (3 points)** The vertical asymptote(s), if any, of the function g(x) is (are) _____.Write your answer(s) as equation(s).
- **14. (3 points)** The non-vertical asymptote(s), if any, of the function g(x) is (are) ______. Write your answer(s) as equation(s).

	x								
15. (3 points) Given the table:	f(x)	-7	-5	-3	-1	3	5	7	
	g(x)	8	3	0	-1	0	3	8	

Evaluate $(g \circ f)(3)$ _____.

16. (3 points) The maximum value of the function $f(x) = -x^2 - 3x + 7$ is: y =______.

17. (3 points) How long will it take an initial investment of \$1000 to be worth \$6500 if the investment **compounds continuously** at an annual interest rate of 4%? Round your answer to the nearest tenth of a year.

18. (4 points) The form of the partial fraction decomposition of the rational function $f(x) = \frac{4x+1}{x(x+3)^2}$ is:

19. (4 points) Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & -4 & 3 \\ 2 & 2 & 1 & -1 \end{bmatrix}$. Some row operation(s) have been applied to *A* to obtain $\begin{bmatrix} 1 & 2 & 3 & 4 \\ -5 & -8 & x & y \\ 2 & 2 & 1 & -1 \end{bmatrix}$. What are the values of *x* and *y*?

20. (4 points) Find the remainder: $\frac{5x^2 + 7x - 3}{x + 1}$

21. (7 points) Assume the following sequence is arithmetic. Find the sum using appropriate formulas. $4 - 1 - 6 - 11 - 16 - \dots - 126$

22. (5 points) Let $f(x) = \frac{3x+5}{x-3}$. Find the inverse of *f* and simplify completely.