Name:	KEY
- · · · · ·	

Date:

Math 1050 PRACTICE Quiz (4.3-5.4)

Solve the following inequality and state the solution in interval notation.

$$3x^2 - x < 14$$

$$3x^2 - x - 14 < 0$$

$$(3X-7)(X+2) < 0$$

$$\chi = \frac{7}{3}$$
 $\chi = -2$

$$3X - 1$$

 $X | 3X^{2} | -7X |$
 $2 | UX | -14 |$

$$\begin{array}{cccc}
+ & - & + \\
& & -2 & 7/3 \\
\hline
F(-3) = & \overline{\left(-2, \frac{7}{3}\right)}
\end{array}$$

$$\left[\left(-2,\frac{7}{3}\right)\right]$$

Solve the following inequality and state the solution in interval notation.

$$\frac{2}{x+3} \ge \frac{1}{x-5}$$

$$\frac{2}{x+3} - \frac{1}{x-6} \ge 0$$

$$\frac{2X-10-(X+3)}{(X+3)(X-5)} \ge 0$$

$$\frac{X-13}{(X+3)(X-5)} \ge 0$$

$$x-int: D=X-13$$

 $X=13$

 $(-3,5) \cup [13,+\infty)$

$$x-int: D=X-13$$

 $X=13$

3. An appliance wholesaler finds the number x appliances she can sell each week is related to the price p by the equation x = 2150 - p, $0 \le p \le 2150$. What is the maximum revenue R? (R = xp) Justify your answer.

$$R = \chi (2160 - X)$$

 $R = 2160 X - X^{2}$

$$X = -\frac{2150}{2(-1)} = 1075$$

$$R = 2160(1076) - (1076)^2$$

1155625

- 4. $h(t) = -t^2 + 4t + 7$ represents the height of a ball, in meters, thrown vertically t seconds after it was thrown.
 - a) What will be the height of the ball at 3 sec?

b) After how many seconds does the ball reach its maximum height?

$$t = -\frac{b}{2a} = -\frac{4}{2(-1)} = -\frac{4}{-2} = 2 \sec 2$$

c) What is the height of the ball when it is at maximum height?

$$h(2) = -(2)^{2} + 4(2) + 7 = [1] + [1]$$