College Algebra Math 1050 January 7-8, 2019

Final Exam Version 1

Name:	
School:	Instructor:
, – – –,	lators are allowed. Time limit is 120 minutes. The point value of each problem. You must show your work to receive any credit, except atly.
Fill in the blank or circle the	correct answer.
1. (2 points) Simplify: $2\begin{bmatrix} 1\\ 3 \end{bmatrix}$	$\begin{bmatrix} 2\\4 \end{bmatrix} - 3 \begin{bmatrix} -2 & 1\\3 & -4 \end{bmatrix} = \underline{\qquad}.$
2. (2 points) The domain of	the function $f(x) = \sqrt{4 - 3x}$ is
annual interest, compounde	to double her initial investment of \$5000. Her account offers 5.5% ed monthly. Set up an equation that enables her to calculate hower investment to double. Do not solve.
4. (3 points) Convert the exp	ponential equation: $a^3 = 4$ into logarithmic form.
5. (3 points) If $\log_b x^2 = 9$,	evaluate $\log_b x$.

For problems 6-8, consider the function f	f(x) =	$x^2 - 3x - 7$
roi problems 0-6, consider the function j	f(x) —	$r^2 - 4$

6. (3 points) The domain of the function f(x) is ______. Write your answer in any form.

7. (3 points) The x-intercept(s) of the function f(x) is (are) ______. Write your answer(s) as ordered pair(s) and leave in exact form.

8. (3 points) The y-intercept(s) of the function f(x) is (are) ______. Write your answer(s) as ordered pair(s).

For problems 9-10, consider the function $g(x) = \frac{x+5}{x^2+3x+2}$.
9. (3 points) The vertical asymptote(s), if any, of the function $g(x)$ is (are) Write your answer(s) as equation(s).
10. (3 points) The non-vertical asyptote(s), if any, of the function $g(x)$ is (are)
Write your answer(s) as equation(s).
11 (2
11. (3 points) Write an expression to find the term containing a^3 in the expansion of $(3a-1)^{16}$.
Do not simplify

- 12. (3 points) Consider matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ -2 & 7 & 0 \\ -4 & 5 & 7 \end{bmatrix}$. Which student is proposing a valid first step to find the inverse matrix, A^{-1} ? Circle all that apply.
 - (a) Beqa's first step to find the inverse of matrix A is: $\begin{bmatrix} \frac{1}{3} & \frac{1}{2} & 1 \\ -\frac{1}{2} & \frac{1}{7} & 0 \\ -\frac{1}{4} & \frac{1}{5} & \frac{1}{7} \end{bmatrix}.$
 - (b) Maka's first step to find the inverse of matrix A is: $\begin{bmatrix} 3 & 2 & 1 & 1 & 0 & 0 \\ -2 & 7 & 0 & 0 & 1 & 0 \\ -4 & 5 & 7 & 0 & 0 & 1 \end{bmatrix}.$
 - (c) Khatuna says that matrix A does not have an inverse because one of the entries is zero.
 - (d) None of the students are proposing a valid first step to find the inverse of A.
- **13.** (3 points) If $f(x) = \frac{2x+1}{x-1}$ and $g(x) = \frac{2}{x}$, then $(f \circ g)(x) = \frac{4+x}{2-x}$. The domain of $f \circ g$ is

_. Write your answer in set builder notation.

14. (3 points) f is a one-to-one function defined by: $\{(5, \frac{1}{9}), (-2, 9), (9, -1), (-9, 4), (\frac{1}{9}, 3)\}.$

Find $f^{-1}(9)$ ______

15. (3 points) Let $f(x) = x^3 + 2$ and $g(x) = x^2$. Which of the following is (are) the composition $f \circ g$? Circle all that apply.

(a)
$$(f \circ g)(x) = (x^3 + 2)^2$$
.

(b)
$$(f \circ g)(x) = x^6 + 2$$
.

(c)
$$(f \circ g)(x) = x^6 + 4$$
.

(d)
$$(f \circ g)(x) = x^5 + 2$$
.

Evaluate
$$(f \circ g)(2)$$
 ______.

17. (3 points) Consider the equation: $\log_3(2x+1) + \log_3(x-1) = 4$. Which student is proposing a valid first step for solving the equation? Circle all that apply.

- (a) Giorgi's first step to solve the equation is: $\log_3[(2x+1)+(x-1)]=4$.
- (b) Lado's first step to solve the equation is: $(2x+1) + (x-1) = \log_3 4$.
- (c) Both Giorgi and Lado are proposing a valid first step to solve the equation.
- (d) Neither Giorgi nor Lado are proposing a valid first step to solve the equation.

18. (3 points) The minimum value of the function $f(x) = x^2 - 6x + 7$ is _____

19. (3 points) Let $b_1 = 3$ and $b_n = 2b_{n-1} + 3$. Then $b_3 = \underline{\hspace{1cm}}$.

20. (3 points) How long will it take an initial investment of \$1000 to be worth \$2500 if the investment compounds continuously at an annual interest rate of 5%?

Round your answer to the nearest tenth of a year.

- **21.** (3 points) Consider the equation: $15 = 3 \cdot 2^{4x}$. Which student is proposing a valid first step to solve the equation? Circle all that apply.
 - (a) Dato's first step to solve the equation is: $15 = 6^{4x}$.
 - (b) Vaja's first step to solve the equation is: $5 = 2^{4x}$.
 - (c) Maka's first step to solve the equation is: $\ln 15 = 4x \ln 3 \ln 2$.
 - (d) All three of the students are proposing a valid first step to solve the equation.
 - (e) None of the students are proposing a valid first step to solve the equation.
- 22. (4 points) The form of the partial fraction decompostion of the rational function

$$f(x) = \frac{2x+1}{x^3+4x}$$
 is ______.

23. (4 points) Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & -4 & 3 \\ 2 & 2 & 1 & -1 \end{bmatrix}$$
. Some row operation(s) have been applied to A to obtain $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & \mathbf{x} & \mathbf{y} \\ 2 & 2 & 1 & -1 \end{bmatrix}$. What are the values of \mathbf{x} and \mathbf{y} _______.

24. (4 points) Find the quotient: $\frac{3x^2 - x + 5}{x - 2}$

- **25.** (4 points) Consider the inequality: $\frac{1}{x+4} < \frac{3}{x-2}$. Which student is proposing a valid first step to solve the inequality? Circle all that apply.
 - (a) Levan's first step to solve the inequality is: $\frac{1}{x+4} \frac{3}{x-2} < 0$.
 - (b) Ladi's first step to solve the inequality is: x 2 < 3(x + 4).
 - (c) Both Levan and Ladi are proposing a valid first step to solve the inequality.
 - (d) Neither Levan nor Ladi are proposing a valid first step to solve the inequality.

26. (4 points) The rational expression $\frac{x+1}{x^2-5x+6}$ has critical numbers at x=-1, x=2 and x=3. Find the solution to the inequality $\frac{x+1}{x^2-5x+6}>0$.

Write the solution in interval notation.

- 27. (4 points) Consider the inequality: $2x^2 5x 3 > 0$. Which student is proposing a valid first step to solve the inequality? Circle all that apply.
 - (a) Elene's first step to solve the inequality is: $2x^2 8x > 0$.
 - (b) Keti's first step to solve the inequality is: $-3x^3 3 > 0$.
 - (c) Masho's first step to solve the inequality is: (2x+1)(x-3) > 0.
 - (d) All three students are proposing a valid first step to solve the inequality.
 - (e) None of the students are proposing a valid first step to solve the inequality.

28. (4 points) f(x) is graphed below in a dashed line and g(x) is graphed below in a solid line. Use the graphs to evaluate (f - g)(3).

- **29.** (4 points) Consider the function: $f(x) = e^x + 1$.
- (a) What is the range of f? ______. Write your answer in any form you choose.
- (b) What is the intercept of f? ______. Write your answer as an ordered pair.

30. (7 points) Assume the following sequence is geometric: $4 - \frac{8}{3} + \frac{16}{9} - \dots$ Find the infinite sum using appropriate formulas. **30.** Answer ______.

31. (9 points) Graph the rational function $f(x) = \frac{x^2}{x^2 + x - 2}$. Your graph should clearly show and label all x- and y-intercept(s) and asymptotes.

32. (7 points) Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 10 \\ -1 & -2 & -2 \end{bmatrix}$. Find the inverse, A^{-1} .

33. (7 points) Solve $2 \ln x = \ln(14 - 5x)$. No points will be awarded if the solution is found
by trial and error.
33. Answer
33. Answer
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial investment double every 7 years.
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial investment double every 7 years.
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial investment double every 7 years.
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial investment double every 7 years.
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial investment double every 7 years.(a) Dachi opens an account with \$10,000,000. How much money will he have in 14 years?
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial investment double every 7 years.
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial investment double every 7 years. (a) Dachi opens an account with \$10,000,000. How much money will he have in 14 years? 34. (a) Answer
 34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial investment double every 7 years. (a) Dachi opens an account with \$10,000,000. How much money will he have in 14 years? 34. (a) Answer (b) Due to certain regulations, the balance of any given account in Seroja Credit Union cannot
34. (7 points) Seroja Credit Union offers to open an account with the condition that an initial investment double every 7 years. (a) Dachi opens an account with \$10,000,000. How much money will he have in 14 years? 34. (a) Answer

35. (7 points) Consider the system of nonlinear equations:

$$-2x + 5y = 1$$

$$4x^2 + 25y^2 = 5$$

(a) Use the graph of the equations below to estimate the real solution(s).

35. (a) Answer_____

(b) Algebraically solve the system of equations given above. Keep the solutions as fractions, not decimals. No points will be awarded if the solution is found by trial and error.

36. (5 points) Let f(x) = 2x + 1 and $g(x) = \frac{1}{3x - 2}$. Find $f \circ g$ and simplify completely.

36. Answer_

37. (8 points) Solve the inequality: $\frac{3}{x-1} \le \frac{4}{x+2}$. Write the solution in interval notation.