pg. 468
6.7 Financial Models

Compound interest Formula:

$$
\begin{array}{ll}
A=P \cdot\left(1+\frac{r}{n}\right)^{(n \cdot t)} & A=\text { ending amount } \\
& P=\text { principal a mount } \\
& r=\text { rate (mus the a decimal) } \\
& n=\text { number of times compounded } \\
& t=\text { time in yrs. }
\end{array}
$$

ex.2) invest $\$ 1000$ at an annual rate of 10% compounded \qquad after 1 year.
(a) compounded semiannually:

$$
\begin{aligned}
& p=1000 \\
& r=.10 \\
& n=2 \\
& t=1
\end{aligned}
$$

(b) compounded monthly:

$$
A=1000\left(1+\frac{.10}{12}\right)^{(12 \cdot 1)} \quad \begin{array}{ll}
P=1000 \\
& \$ 1104.71
\end{array} \quad \begin{array}{ll}
r=.10 \\
& n=12 \\
& t=1
\end{array}
$$

continuous compounding Formula:

$$
A=P e^{r \cdot t}
$$

$A=$ ending amount $P=$ principal 1 amount $e=\# e(2.71828)$

$$
r=\text { rate }
$$

$$
t=\text { time in yrs. }
$$

ex.3) invest $\$ 1000$ at a rate of 10% compounded continuously for a time of 1 yr .

$$
\begin{aligned}
& P=1000 \\
& r=.10 \\
& t=1
\end{aligned} \quad A=1000 e^{(.10 \cdot 1)}=\$ 1105.17
$$

Effective Rate of interest Formula:
compounding n times per yr.: $r_{e}=\left(1+\frac{r}{n}\right)^{n}-1$
continuous compounding: $r_{e}=e^{r}-1$
ex. 4) You buy a 5 yr CD. You visit 3 banks to determine their rates.

American Express: 2.15% annual int. comp.monthly
Frrstbank: 2.20% compounded quarteny
Discover: 2.12%. compounded daily
Which bank has the best deal?
Best deal = highest effective interest rate

American Express	First Bank	Discover
$r_{e}=\left(1+\frac{0.0215}{12}\right)^{12}-1$ $r_{e}=\left(1+\frac{0.022}{4}\right)^{4}-1$ $r_{e}=\left(1+\frac{0.0212}{365}\right)^{365}-1$ $\approx 1.02171-1$ $\approx 1.02218-1$ $\approx 1.02143-1$ $=0.02171$ $=0.02218$ $=0.02143$ $=2.171 \%$ $=2.218 \%$ $=2.143 \%$ highest, so First Bank is best deal]		

Present Value formula:

$$
P=A \cdot\left(1+\frac{r}{n}\right)^{(-n t)} \quad P=A e^{-r t}
$$

(How much will you need to invest to recieve A dollars after $t y r s)$
ex.5) A zero-coupon bond can be redeemed in 10 yrs for $\$ 1000$. How much should you be willing to pay fer it how if you want a return of 8% compounded monthly?

$$
\begin{aligned}
& A=1000 \\
& n=12 \\
& r=0.08 \\
& t=10
\end{aligned}
$$

ex.6) What interestrate (compounded annually) is needed in order to double an investment in 5 yrs?

$$
\begin{aligned}
& A=2 P \\
& n=1 \\
& t=5
\end{aligned}
$$

$$
\begin{aligned}
& 2 p=p \cdot\left(1+\frac{r}{1}\right)^{(5.1)} \\
& \frac{2 p}{2 p}=\frac{p(1+r)^{5}}{p} \\
& \sqrt[5]{2}=\sqrt[5]{(1+r)^{5}} \\
& \sqrt[5]{2}=1+r \\
& -1=-1 \\
& r=\sqrt[5]{2}-1 \approx 1.143698-1=0.148698
\end{aligned}
$$

rate would need to be 14.87%
ex.7) How long will it take to triple an investment if it earns 5% compounded continuously?

$$
\begin{aligned}
& A=3 P \\
& e^{r t} \\
& r=0.05 \\
& \frac{3 p}{P}=\frac{P e^{0.05 t}}{P} \quad \rightarrow t=\frac{\ln (3)}{0.05} \approx 21.97 \\
& 3=e^{0.05 t} \\
& \frac{\operatorname{Ln}(3)}{0.05}=\frac{0.05 t}{0.05} \\
& \text { it will takeabout }
\end{aligned}
$$

