\qquad

Math 1050 PRACTICE Quiz (12.2-12.4)

1. (2 points) Simplify: $4\left[\begin{array}{cc}-1 & 2 \\ 3 & -4\end{array}\right]-2\left[\begin{array}{cc}2 & 4 \\ 6 & -8\end{array}\right]$
2. (4 points) Let $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -1 & 0 & -4 & 3 \\ 2 & 2 & 1 & -1\end{array}\right]$. Some row operation(s) have been applied to A to obtain $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -1 & 0 & -4 & 3 \\ 0 & -2 & \boldsymbol{x} & \boldsymbol{y}\end{array}\right]$. What are the values of \boldsymbol{x} and \boldsymbol{y} ?
3. (5 points) Using Cramer's Rule to find x, where $x=\frac{D_{x}}{D}$, for the following system of equations:

$$
\left\{\begin{array}{c}
x+4 y-3 z=0 \\
3 x-y+3 z=0 \\
x+y+6 z=0
\end{array}\right.
$$

4. (7 points) Let $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 2 & 3 \\ 1 & -1 & 0\end{array}\right]$. Find inverse, A^{-1}.
5. (7 points) Solve the following system of equations using matrices (row operations). No points will be given if the solution is found through trial and error or using another method.

$$
\left\{\begin{array}{c}
x-y+z=-4 \\
2 x-3 y+4 z=-15 \\
5 x+y-2 z=12
\end{array}\right.
$$

